Trigonometry	Name:
Study Guide 6	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat \& Organized

1. (2 points) Verify by performing cross-multiplication:

$$
\frac{\sin x}{1-\cos x}=\frac{1+\cos x}{\sin x}
$$

2. (3 points) Verify by multiplying the numerator and the denominator of the fraction on the left side by the conjugate of the denominator:
$\frac{\sin x}{1-\cos x}=\frac{1+\cos x}{\sin x}$
3. Given: $\sin \alpha=\frac{\sqrt{5}}{3}$
(a) (2 points) Find $\csc \alpha$
(a) \qquad
(b) (2 points) Find $\sin (-\alpha)$
(b)
4. For a circle with radius r, a central angle θ radians subtends an arc of length $s=r \theta$, use this formula to find the arc length for
(a) (2 points) $r=10 \mathrm{in}, \theta=0.5$ radians
(a) \qquad
(b) (2 points) $r=6 \mathrm{ft}, \theta=30^{\circ}$
(b)
5. (2 points) Simplify: $\frac{\tan x \cdot \cot x}{\sec x \cdot \cos x}$
6.
7. For a circle with radius r, the area A of a circular sector with central angle θ radians is given by $A=\frac{1}{2} r^{2} \theta$, use this formula to find
(a) (3 points) the area of a circular sector with $r=4$ in and $\theta=\frac{3 \pi}{2}$ radians.
(a)
(b) (3 points) the area of a circular sector with $r=24 \mathrm{ft}$ and $\theta=270^{\circ}$.
(b)
8. (4 points) Given $\tan \alpha=\frac{2}{3}$ and $\pi<\alpha<3 \pi / 2$, find the value of all five remaining trigonometric functions of the angle α.
9.
10. Given: $\cos \alpha=\frac{-1}{3}$
(a) (2 points) Find $\sec \alpha$
\qquad
(b) (2 points) Find $\cos (-\alpha)$
(b)
11. (3 points) Simplify: $\frac{1+\tan \alpha}{1+\cot \alpha}$
12.
13. (2 points) Verify: $\left(1-\cos ^{2} x\right)\left(1+\cot ^{2} x\right)=1$
14. \qquad
15. Given $\alpha=20^{\circ}$:
(a) (2 points) Find its complement.
(a)
(b) (2 points) Find its supplement.
(b) \qquad
16. Given $\alpha=\frac{\pi}{5}$ radians:
(a) (2 points) Find its complement.
(a) \qquad
(b) (2 points) Find its supplement.
(b)
17. (3 points) Find the area of the triangle $A B C$ with $a=7 \mathrm{ft}, b=9 \mathrm{ft}$, and $c=12$ by using the Heron's formula.
18. \qquad
19. (3 points) Find the area of the triangle $A B C$ with $a=5 \mathrm{ft}, b=12 \mathrm{ft}$, and $c=13$ by using the Heron's formula.
20.
21. (2 points) Given $\tan \alpha=\frac{-\sqrt{6}}{3}$, find $\cot (-\alpha)$
22. \qquad
