Trigonometry	Name:
Study Guide 6	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat & Organized

1. (2 points) Verify by performing cross-multiplication:

 $\frac{\sin x}{1 - \cos x} = \frac{1 + \cos x}{\sin x}$

2. (3 points) Verify by multiplying the numerator and the denominator of the fraction on the left side by the conjugate of the denominator:

$$\frac{\sin x}{1 - \cos x} = \frac{1 + \cos x}{\sin x}$$

3. Given: $\sin \alpha = \frac{\sqrt{5}}{3}$ (a) (2 points) Find $\csc \alpha$

(b) (2 points) Find $\sin(-\alpha)$

(a) _____

(b) _____

- 4. For a circle with radius r, a central angle θ radians subtends an arc of length $s = r\theta$, use this formula to find the arc length for
 - (a) (2 points) r = 10 in, $\theta = 0.5$ radians
- (b) (2 points) r = 6 ft, $\theta = 30^{\circ}$ (b) _____
- 5. (2 points) Simplify: $\frac{\tan x \cdot \cot x}{\sec x \cdot \cos x}$

5. _____

- 6. For a circle with radius r, the area A of a circular sector with central angle θ radians is given by A = ¹/₂r²θ, use this formula to find
 (a) (3 points) the area of a circular sector with r = 4 in and θ = ^{3π}/₂ radians.
 - (a) _____
 - (b) (3 points) the area of a circular sector with r = 24 ft and $\theta = 270^{\circ}$.

(b) _____

7. (4 points) Given $\tan \alpha = \frac{2}{3}$ and $\pi < \alpha < 3\pi/2$, find the value of all five remaining trigonometric functions of the angle α .

	7
8. Given: $\cos \alpha = \frac{-1}{3}$ (a) (2 points) Find $\sec \alpha$	
	(a)
(b) (2 points) Find $\cos(-\alpha)$	(b)
9. (3 points) Simplify: $\frac{1 + \tan \alpha}{1 + \cot \alpha}$	(0)

9._____

10. (2 points) Verify: $(1 - \cos^2 x)(1 + \cot^2 x) = 1$

10. _____

11. Given $\alpha = 20^{\circ}$:

(a) (2 points) Find its complement.

	(a)
(b) (2 points) Find its supplement.	
	(b)
12. Given $\alpha = \frac{\pi}{5}$ radians:	
(a) (2 points) Find its complement.	
(b) (2 points) Find its supplement.	(a)
	(b)

13. (3 points) Find the area of the triangle ABC with a = 7 ft, b = 9 ft, and c = 12 by using the Heron's formula.

13. _____

14. (3 points) Find the area of the triangle ABC with a = 5 ft, b = 12 ft, and c = 13 by using the Heron's formula.

14. _____ **15.** (2 points) Given $\tan \alpha = \frac{-\sqrt{6}}{3}$, find $\cot(-\alpha)$

15. _____